Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1.

نویسندگان

  • Karin Heurlier
  • Faye Williams
  • Stephan Heeb
  • Corinne Dormond
  • Gabriella Pessi
  • Dustin Singer
  • Miguel Cámara
  • Paul Williams
  • Dieter Haas
چکیده

In Pseudomonas aeruginosa, the small RNA-binding, regulatory protein RsmA is a negative control element in the formation of several extracellular products (e.g., pyocyanin, hydrogen cyanide, PA-IL lectin) as well as in the production of N-acylhomoserine lactone quorum-sensing signal molecules. RsmA was found to control positively the ability to swarm and to produce extracellular rhamnolipids and lipase, i.e., functions contributing to niche colonization by P. aeruginosa. An rsmA null mutant was entirely devoid of swarming but produced detectable amounts of rhamnolipids, suggesting that factors in addition to rhamnolipids influence the swarming ability of P. aeruginosa. A small regulatory RNA, rsmZ, which antagonized the effects of RsmA, was identified in P. aeruginosa. Expression of the rsmZ gene was dependent on both the global regulator GacA and RsmA, increased with cell density, and was subject to negative autoregulation. Overexpression of rsmZ and a null mutation in rsmA resulted in quantitatively similar, negative or positive effects on target genes, in agreement with a model that postulates titration of RsmA protein by RsmZ RNA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Broth versus Surface-Grown Cells: Differential Regulation of RsmY/Z Small RNAs in Pseudomonas aeruginosa by the Gac/HptB System

Two-component systems are capable of profoundly affecting genetic regulation in bacteria by detecting environmental stimuli, allowing them to quickly adapt. In Pseudomonas aeruginosa, the small RNAs (sRNAs) RsmY and RsmZ are under the control of the GacS/A system. They have been described as ones of the major key players in the control of planktonic and surface-associated behaviors. Genetic reg...

متن کامل

Pseudomonas aeruginosa AlgR phosphorylation modulates rhamnolipid production and motility.

AlgR is a key Pseudomonas aeruginosa transcriptional response regulator required for virulence. AlgR activates alginate production and twitching motility but represses the Rhl quorum-sensing (QS) system, including rhamnolipid production. The role of AlgR phosphorylation is enigmatic, since phosphorylated AlgR (AlgR-P) is required for twitching motility through the fimU promoter but is not requi...

متن کامل

PmrA/PmrB Two-Component System Regulation of lipA Expression in Pseudomonas aeruginosa PAO1

Pseudomonas lipases are well-studied, but few studies have examined the mechanisms of lipase expression regulation. As a global regulatory protein, PmrA controls the expression of multiple genes such as the Dot/Icm apparatus, eukaryotic-like proteins, and secreted effectors. In this study, the effect of PmrA on expression of the lipase lipA in Pseudomonas aeruginosa PAO1 was investigated by kno...

متن کامل

NrsZ: a novel, processed, nitrogen-dependent, small non-coding RNA that regulates Pseudomonas aeruginosa PAO1 virulence

The opportunistic pathogen Pseudomonas aeruginosa PAO1 has a remarkable capacity to adapt to various environments and to survive with limited nutrients. Here, we report the discovery and characterization of a novel small non-coding RNA: NrsZ (nitrogen-regulated sRNA). We show that under nitrogen limitation, NrsZ is induced by the NtrB/C two component system, an important regulator of nitrogen a...

متن کامل

Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella.

Pseudomonas aeruginosa exhibits swarming motility on 0.5 to 1% agar plates in the presence of specific carbon and nitrogen sources. We have found that PAO1 double mutants expressing neither flagella nor type IV pili (fliC pilA) display sliding motility under the same conditions. Sliding motility was inhibited when type IV pilus expression was restored; like swarming motility, it also decreased ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 186 10  شماره 

صفحات  -

تاریخ انتشار 2004